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Instead of the &&functional''mode shapes (de"ned by the admissible, comparison or eigen-
functions) employed by the classical assumed mode (or modal analysis) method, the lowest
several &&numerical'' (or vector) mode shapes and the associated natural frequencies of
a &&non-periodic'' multispan pipe with the prescribed supporting conditions and "lled with
the &&stationary'' #uid (with velocity ;"0) are determined by means of the transfer matrix
method (TMM). Using the last mode shapes together with the natural frequencies and
incorporating with the expansion theorem, the partial di!erential equation of motion for the
in"nite degree-of-freedom (d.o.f.) continuous multispan pipe "lled with &&#owing'' #uid (with
;O0) is converted into a matrix equation. Solving the last matrix equation with the direct
integration method gives the dynamic responses of the #uid-conveying pipe. Since the order
of the transfer matrix for either each pipe segment or the entire piping system is 4]4, which
is independent of the number of the spans for the system, the presented approach is simpler
than the existing techniques, particularly for the piping systems with large number of spans.
It is also noted that the classical assumed mode (or modal analysis) method is easily
applicable only to the special cases where the functions for the approximate mode shapes are
obtainable, such as the &&single-span'' beams or the &&periodical'' multispan beams (with
identical spans and identical constraints). However, the presented &&numerical'' (or vector)
mode method is suitable for many practical engineering problems.
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1. INTRODUCTION

The dynamic analyses of a &&single-span'' pipe that conveys #uid have been extensively
performed by many researchers [1}8]. But the literature regarding the dynamic analyses of
a &&multispan'' #uid-conveying pipe (either "nite or in"nite) is relatively limited [9}12] in
spite of the fact that the material for general periodic structures subjected to other kinds of
loads (such as moving loads, convected pressure "elds, etc.) is abundant [13}18]. From the
existing literature, one "nds that most of the researchers studied the stability problem of the
piping systems [1}7, 9}12], whereas fewer researchers have studied the forced vibration of
a #uid-conveying pipe [3, 8, 9, 12]. Most dynamic analyses of a &&single-span'' piping system
are performed using the assumed mode (or modal analysis) method [1}4, 7] or FEM [5, 6],
but those of a &&periodically supported'' #uid-conveying piping system are solved with the
wave approach [10}12]. This is because the dynamic equation of motion for any span of the
latter system is the same and the amount of computation for the wave approach is
independent of the number of spans.

Although the literature regarding &&periodical''multispan structures is vast [9}12, 13}15,
17], that relating to the general &&non-periodical'' ones is rare [16, 18]. The main reason is
0022-460X/01/020201#15 $35.00/0 ( 2001 Academic Press
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that the wave approach is easily applicable only to periodic structures and not to
non-periodic ones. In addition, the conventional FEM can become very laborious when the
number of spans is very large. In Refs. [17, 18], the order of the overall property matrices for
the whole multispan structure is signi"cantly reduced by using the dynamic sti!ness
matrices [19] and only one element per span. However, the order of the overall property
matrices for the whole structure is yet to increase with the number of spans. This is unlike
the transfer matrix method (TMM) [16, 20], in which the order of the overall transfer matrix
is kept unchanged. Furthermore, since the dynamic responses obtained from the
dynamic-sti!ness-matrix method are in the &&frequency domain'' [17, 18], the last method
will not be a suitable approach if the pertinent information required is the dynamic
responses in the &&time domain'' such as the time histories of displacements for certain points
of a piping system.

In this paper, the lowest several natural frequencies and the associated normal mode
shapes of a non-periodic multispan pipe "lled with &&stationary'' #uid (with velocity ;"0)
are determined with the TMM [16, 20]. Then by using the foregoing free-vibration-analysis
results and the expansion theorem [21], the partial di!erential equation of motion for
a multispan piping system conveying #uid (with velocity ;O0) and subject to external
loads is converted into a matrix equation. Solving the last matrix equation with the direct
integration method [22] yields the dynamic responses of the piping system. Comparing
with the existing techniques, it is found that the presented approach has the advantage of
being more simple, straightforward and practical.

For convenience, the classical assumed mode (or modal analysis) method is called the
&&functional'' mode method and the presented method is the &&numerical'' (or vector) mode
method in this paper. This is because the mode shapes for the assumed mode (or modal
analysis) method take the form of admissible functions, comparison functions or
eigenfunctions, while those for the presented method cannot be represented by the last
functions and must be de"ned numerically (in vector form).

2. FORMULATION OF THE PROBLEM

Under the assumptions that [1, 2, 9] the tube is made of homogeneous Kelvin}Voigt
viscoelastic material, the #uid is incompressible and inviscid, the e!ect of the pipe motion on
the #uid is negligible and the velocity pro"le of the #uid is uniform over the cross-sectional
area of the pipe (i.e., the plug-#ow type), the equation of motion for a uniform
Bernoulli}Euler pipe is given by [1, 2] (see Figure 1).
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where x is the axial co-ordinate along the undeformed centerline of the pipe, y the vertical
(transverse) de#ection of the pipe, E the Young's modulus, A the cross-sectional area of the
pipe, I the moment of inertia of A, m

p
and m

f
are, respectively, the mass of pipe and that of

#uid per unit length of the pipe, ; the #uid velocity, p the #uid pressure intensity, ¹ the
axial tension in the pipe, C

i
the coe$cient of (internal) dissipation of the pipe material, C

0
the coe$cient of external (outer) viscous damping due to friction between the pipe and the
#uid, and t the time.



Figure 1. An N-span non-periodically supported #uid-conveying pipe subjected to the external loads F
r
(t),

r"1, 2,2
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According to the modal analysis approach, one may assume that
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where >
j
(x) denotes the jth normal mode shape of the multispan pipe containing

&&stationary'' #uid (with ;"0), q
j
(t) denotes the associated generalized co-ordinate, and n@

is the total number of mode shapes considered. For the non-periodic multispan pipe as
shown in Figure 1, neither admissible, comparison nor eigenfunction for the normal made
shapes is obtainable, hence the &&numerical'' (or vector) normal mode shapes of the pipe are
determined with the TMM in this paper. The transfer matrices for the "eld, station and
intermediate rigid (pin) support are shown in Appendix A.

The substitution of equation (2) into equation (1) gives
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where the primes and overdots denote the di!erentiations with respect to the spatial
co-ordinate x and the temporal co-ordinate t respectively.

Multiplying equation (3) by >
k
(x) dx, integrating the resulting expression over the total

pipe length ¸, and using the following relationship for the orthogonality of normal mode
shapes of the Bernoulli}Euler beam:
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where
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In the foregoing equations, M N denotes a column vector, Dx is the length of each &&"eld''
between any two adjacent &&elastic'' stations, s is the total number of elastic stations for the
entire multispan pipe with length ¸ and x

r
is the location of the rth elastic station. The

relationship between Dx and s is given by (see Figure 2(a))

s"¸/Dx (16a)

while the relationship between x
r
and Dx is given by

x
r
"[(r!1)#0)5]Dx. (16b)

In equation (8), u
k

is the kth natural frequency of the multispan pipe "lled with the
stationary #uid (with;"0) and is obtained from the TMM in this paper. In equation (11),
MMN

j
is the vector of bending moments associated with the jth mode shape M>N

j
, which is

one of the components for the state-variable vector MQN for the TMM as may be seen from
equation (A.4). In equation (12), F

r
(t) is the concentrated force located at x"x

r
(applied on

the rth &&elastic'' station). For the case that no load is applied on station r one has F
r
(t)"0,

and for the distributed loads one may replace the latter by the equivalent concentrated
loads applied on the associated &&elastic'' stations.

It is noted that neither the curvatures of the mode shapes, >@@
j
(x), nor the associated

bending moments M
j
(x) may be obtained from the conventional FEM unless a particular

formulation is employed. This is one of the reasons why TMM is more suitable than the
FEM for the evaluation of B

kj
(k, j"1}n@) de"ned by equation (11) and so is the case for the

solution of the title problem.
Writing equation (5) in matrix form gives

[MM ]MqK (t)N#[CM ]MqR (t)N#[KM ]Mq(t)N"MFM (t)N, (17)



Figure 2. The mathematical models of piping system for (a) the transfer matrix method (TMM) and (b) the "nite
element method (FEM).
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In the above expressions, M N denotes the column vector, [ ] the square matrix and v y
the diagonal matrix. In equations (20) and (21), the coe$cients of the matrices [A] and [B]
are de"ned by equations (10) and (11) respectively.

For a Bernoulli}Euler tubular beam "lled with stationary #uid, one has
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Free vibration of the beam takes the form

y (x, t)">(x) e *ut, (26)

where >(x) denotes the amplitude of y(x, t), which is the mode shape of the beam, u is the

corresponding natural frequency and i"J!1. The substitution of equation (26) into
equation (25) yields

>@@@@(x)"j4>(x) (27)

where the de"nition of j is given by equation (8) for the kth mode.
By using the Newmark direct integration method [22], one may obtain the values of

Mq(t)N, MqR (t)N and MqK (t)N from equation (17). The vector for the vertical (transverse)
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displacements of the piping system at any time t, My (t)N, is then determined by
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By setting [CM ]"0 and MFM (t)N"0, one may determine the in#uence of #uid velocity (;), the
Coriolis force term 2m

f
;(L2y/LxLt), #uid pressure intensity (p) and axial tension (¹ ) on the

natural frequencies of the piping system from equation (17) with the Jacobi method [22]. If
MFM (t)N"0 and [CM ]O0, then the &&complex'' eigenvalues of equation (17) may be
determined with the technique of solving the eigenvalues of a &&damped'' system as shown in
reference [21].

3. NUMERICAL RESULTS AND DISCUSSION

The mathematical model for the multispan #uid-conveying piping system studied in this
paper is shown in Figure 2(a). The total length of the pipe is ¸"40 m, the total number of
spans is N

s
"7. The length of the middle span (the 4th span counted from the left end of the

pipe) is l
4
"16 m, and all the other six spans have the same lengths l

i
"4 m

(i"1, 2, 3, 5, 6, 7). The whole pipe rests on eight &&rigid'' supports. For convenience of
free-vibration analysis with the TMM, the whole pipe is divided into 47 pipe segments
bounded by 48 stations. Each pipe segment between any two adjacent &&stations'' constitutes
a &&"eld''. In Figure 2(a), the black points (f) denote the &&elastic'' stations, while the small
hollow circles (s) located above the eight rigid supports are the &&elastic'' stations, but is
impossible for all the &&rigid'' stations. It is evident that transverse de#ection (in the
y direction) is possible for all the &&rigid'' stations. All "elds have the same lengths
Dx"1)0 m except those bounded by an elastic station and a rigid station. The length for
each of the latter "elds is Dx@"Dx/2"0)5 m. Since the lumped masses on the rigid stations
have no e!ect on the natural frequencies and the associated mode shapes of the pipe, these
lumped masses are set to be equal to zero. In other words, the total mass of the whole pipe is
divided into 40 lumped masses and concentrated on the 40 &&elastic'' stations. The
magnitude of each lumped mass is equal to (m

f
#m

p
)Dx. In Figure 2(a), the notation Si

denotes the ith &&elastic'' stations (excluding the &&rigid'' stations). To check the results
obtained from the TMM, free-vibration analysis on the &&stationary'' pipe is also made by
using the FEM. Figure 2(b) shows the "nite element model.

The other pertinent data are: outside diameter of pipe d
o
"355)6 mm, thickness of pipe

wall t
8
"9)0 mm, inside diameter of pipe d

i
"d

o
!2t

8
"337)6 mm, cross-sectional area

A"nd2
i
/4"8)95]10~2 m2, moment of inertia for the cross-sectional area

I"n (d4
o
!d4

i
)/64"1)4726]10~4 m4, Young's modulus E"200]109 N/m2, mass of

pipe per unit length m
p
"76)9 kg/m, mass of #uid per unit length m

f
"o

f
A"89)5 kg/m,

pipe length ¸"40 m, internal #uid pressure intensity p"3000 N/m2, axial tension in the
pipe ¹"0, damping coe$cients per unit length C

0
"C

i
"198)8256 (N-s/m)/m. The values

of C
0

and C
i
are determined based on the assumption that
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TABLE 1

¹he ,ve lowest undamped natural frequencies of the 00stationary11 piping system (with
;"p"¹"0), u

i
(i"1}5), obtained from ¹MM and FEM

Natural frequencies (rad/s)

Methods u
1

u
2

u
3

u
4

u
5

TMM 29)87164 84)62074 167)52000 259)28000 273)98390
FEM 29)87839 84)62407 167)59460 259)54270 274)21770
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with damping parameter m@"0)02 and the "rst undamped natural frequency of the
&&stationary'' pipe, u

1
, as shown in Table 1. The total number of modes considered is n@"5.

It has been found that the di!erences between the results based on n@"5 and those based
on n@'5 are negligible.

3.1. UNDAMPED NATURAL FREQUENCIES AND MODE SHAPES OF THE STATIONARY PIPE

For the present &&stationary'' piping system (with ;"p"¹"0), the "ve lowest
&&undamped'' natural frequencies and the corresponding normal mode shapes obtained from
TMM (with the mathematical model shown in Figure 2(a)) and FEM (with the
mathematical model shown in Figure 2(b)) are listed in Table 1 and plotted in Figure 3
respectively. From Table 1 one sees that the "ve lowest undamped natural frequencies u

i
(i"1}5) obtained from the TMM and FEM are in close agreement. The corresponding
mode shapes M>N

i
(i"1}5) obtained from the TMM (denoted by==) are also very close

to those from the FEM (denoted by ----) as shown in Figure 3.

3.2. EFFECT OF AVERAGE FLUID VELOCITY;
0
ON THE UNDAMPED NATURAL FREQUENCIES

If the &&instantaneous'' #uid velocity in the pipe takes the form ;(t)";
0
(1#d cos u

f
t),

where;
0

denotes the &&average'' #uid velocity (or simply called #uid velocity), d denotes the
pulsating parameter and u

f
is the pulsating frequency, then the in#uence of ;

0
on the "ve

lowest undamped natural frequencies of the piping system under the conditions that
d"p"¹"[CM ]"0 is shown in Table 2. Since d"0, the magnitude of u

f
has nothing to

do with the natural frequencies uN
i
(i"1, 2,2). The third row of Table 2 shows the "ve

lowest natural frequencies of the piping system with;";
0
"0, which are exactly equal to

the ones listed in the third row of Table 1. In other words, the "ve lowest undamped natural
frequencies uN

i
(i"1}5) obtained from the &&numerical'' mode method agree with the

corresponding ones u
i
(i"1}5) obtained from the TMM if;"d"p"¹"[CM ]"0 as it

should be. For convenience, the relationship between;
0
versus uN

i
(i"1}3) is also shown in

Figure 4, which is plotted based on the data listed in columns 1}4 of Table 2. From Figure
4 one sees that increasing #uid velocity;

0
has the e!ect of reducing the undamped natural

frequencies of the piping system, uN
i
(i"1, 2,2), and this e!ect of ;

0
on the "rst natural

frequency uN
1

is much more signi"cant than that on the other ones uN
i
(i"2, 3,2). Besides,

the value of uN
1

approaches zero when ;
0
+55 m/s (see Figure 4). This means that the

present piping system will have the problem of buckling instability [3, 4] if the #uid velocity
;

0
is greater than 55 m/s in the speci"ed conditions.



Figure 3. The "ve lowest normal mode shapes of the stationary piping system, M>N
i
(i"1}5), obtained from

TMM (===) and those from FEM (-----).
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3.3. TIME HISTORIES OF VERTICAL DISPLACEMENTS FOR STATION No. 19

Unless particularly stated, the dynamic responses of the piping system presented in this
paper are obtained based on the assumptions that p"3000 N/m2, d"¹"0, damping
parameter m@"0)02 (or C

0
"C

i
"198)8256 (N-s/m)/m), and a single exciting force on

&&elastic'' station No. 21 (located at x
21
"20)5 m) F

21
(t)"9800 sinu

e
t N. Under the last

conditions and with Coriolis force considered and #uid velocity ;
0
"5 m/s, the time

histories of the vertical (transverse) displacements for the &&elastic'' station No. 19 (located at
x
19
"18)5 m) of the piping system as shown in Figure 2(a) are plotted in Figure 5 for the

exciting frequencies u
e
"20, 30, 50, 84 and 120 rad/s, respectively, where the abscissa

denotes the time t (s) and the ordinate denotes the vertical displacements of station No. 19 at



TABLE 2

In-uence of average -uid velocity ;
0

on the ,ve lowest undamped natural frequencies of the
piping system with d"p"¹"[CM ]"0

Natural frequencies uN
i
(rad/s)

Fluid velocity
;

0
(m/s) u6

1
u6

2
u6

3
u6

4
u6

5

0)0 29)87164 84)62074 167)52000 259)28000 273)98390
10)0 29)38198 84)37637 167)37799 259)18592 273)89179
20)0 27)85883 83)63878 166)95142 258)89916 273)61957
30)0 25)10894 82)39430 166)23842 258)41020 273)17559
40)0 20)63445 80)61865 165)23594 257)70157 272)57529
50)0 12)70060 78)27453 163)93953 256)74959 271)83950
60)0 !12)80547 75)30732 162)34330 255)52526 270)99355
70)0 !23)48067 71)63761 160)43966 253)99643 270)06498

Figure 4. E!ect of average #uid velocity ;
0

on the three lowest undamped natural frequencies of the piping
system with d"p"¹"[CM ]"0: *** for uN

1
; ----- for uN

2
; )))))) for uN

3
.
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any time t, y
19

(t), with unit meters. From the "gure one sees that the two curves based on
u

e
"30 rad/s (denoted by n** ) and u

e
"84 rad/s (denoted by ----) oscillate sinusoidally

with amplitudes increasing gradually with the increase of time. This is a resonable result,
because the last two exciting frequencies (u

e
) are near the "rst undamped natural frequency

uN
1
"29)73535 rad/s and the second one uN

2
"84)55239 rad/s (with p"3000 N/m2 and

;
0
"5 m/s) respectively. However, the other three curves based on the exciting frequencies

u
e
"20, 50 and 120 rad/s oscillate irregularly because these exciting frequencies are far

away from any natural frequencies of the piping system. Perhaps, all the foregoing facts may
be helpful for con"rming the reliability of the results presented in the subsequent
subsections.

3.4. EFFECT OF FLUID VELOCITY ;
0

ON THE MAXIMUM DYNAMIC RESPONSES

If all the situations are the same as in the last subsection except that the Coriolis force is
neglected and the exciting frequencies are u

e
"0}300 rad/s, then the in#uence of the #uid



Figure 5. Time histories of vertical (transverse) displacements of station No. 19 for the piping system, y
19

(t),
subjected to F

21
(t)"9800 sinu

e
t N with ;

0
"5 m/s: s** for u

e
"20 rad/s, n** for u

e
"30 rad/s,*** for

u
e
"50 rad/s, ----- for u

e
"84 rad/s,= for u

e
"130 rad/s.

Figure 6. In#uence of #uid velocity ;
0

on the maximum vertical displacements of station No. 19 of the piping
system, Dy

19
(t) D

max
, with the Coriolis force neglected: n** for ;

0
"0; ----- for ;

0
"5 m/s; s** for ;

0
"10 m/s.
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velocity ;
0

on the maximum vertical (transverse) displacements of station No. 19 of the
piping system (see Figure 2(a)), Dy

19
(t) D

max
, is shown in Figure 6 for the cases of ;

0
"0,

5 and 10 m/s respectively. It is seen that the "rst peak value of Dy
19

(t) D
max

corresponding to
u

e
+30 rad/s+uN

1
increases with increasing #uid velocity ;

0
and all the values of

Dy
19

(t) D
max

corresponding to the other exciting frequencies are hardly a!ected by the #uid
velocity ;

0
. This phenomenon is similar to the in#uence of ;

0
on the undamped natural

frequencies of the piping system, uN
i
(i"1, 2,2), where the "rst natural frequency uN

1
is

signi"cantly dependent upon the magnitude of ;
0
, while the other natural frequencies uN

i
(i"2, 3,2) are less dependent on the #uid velocity;

0
as shown in the previous subsection

(see Figure 4).



Figure 7. In#uence of Coriolis force on the maximum vertical displacements at station No. 19 of the piping
system, Dy

19
(t) D

max
, for (a) #uid velocity ;

0
"5 m/s, (b) ;

0
"10 m/s and (c) ;

0
"20 m/s: s** with the Coriolis

force neglected: n----- with Coriolis force considered.
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Figure 8. In#uence of damping parameter m@ on the maximum vertical displacements of station No. 19 for the
piping system with Coriolis force considered for (a);

0
"5 m/s and (b);

0
"10 m/s: s** with m@"0)02; n----- with

m@"0)04.
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3.5. EFFECT OF CORIOLIS FORCE ON THE MAXIMUM DYNAMIC RESPONSES

For the present problem, the Coriolis force is represented by the term 2m
f
; L2y/LxLt of

equation (1) or 2m
f
;[A] of equation (20). If all conditions are the same as in the last

subsection except the Coriolis force and the #uid velocities, then the e!ect of Coriolis
(damping) force on the maximum response of station No. 19, Dy

19
(t) D

max
, is shown in Figure

7 where the solid curves are obtained by &&neglecting'' the Coriolis force and the dashed
curves by &&considering'' the Coriolis force. Besides, Figure 7(a) is for the case of #uid velocity
;

0
"5 m/s, Figure 7(b) for;

0
"10 m/s and Figure 7(c) for;

0
"20 m/s. From Figure 7(a)

one sees that the Coriolis force has negligible damping e!ect (to suppress the dynamic
response of the piping system) over the range of exciting frequencies u

e
"1}300 rad/s. The

e!ect of the Coriolis force as shown in Figures 7(b) and 7(c) is similar to that shown in
Figure 7(a) except that the di!erences between the "rst peak values of Dy

19
(t) D

max
for the

curves of Figures 7(b) and 7(c) corresponding to the small triangles (n) and those
corresponding to the small hollow circles (s) increase with the increase of #uid velocities
;

0
. This means that the Coriolis force has the &&negative'' damping e!ect (to raise the
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dynamic response of the piping system) if u
e
+30 rad/s+uN

1
. In reference [4], it has been

reported that the interplay between the centrifugal and Coriolis forces may lead to an
overall &&negative'' damping. It is believed that this should be the reason for arriving at the
last phenomenon.

3.6. EFFECT OF DAMPING ON THE MAXIMUM DYNAMIC RESPONSES

Under the same conditions as in the previous subsections with the Coriolis force
considered, the in#uence of damping parameter m@ (or damping coe$cients per unit length
C

0
and C

i
de"ned by equation (30)) on the maximum response of station No. 19, Dy

19
(t) D

max
,

is shown in Figure 8(a) for #uid velocity ;
0
"5 m/s and in Figure 8(b) for ;

0
"10 m/s,

where the solid curves denote the result based on m@"0)02 and the dashed curves denote
that based m@"0)04. It is seen that the values of Dy

19
(t) D

max
associated with the dashed curves

(with m@"0)04) are always smaller than the corresponding ones associated with the solid
curves (with m@"0)02) as it should be.

4. CONCLUSIONS

1. For the dynamic analyses of a long &&non-periodic'' multispan #uid-conveying pipe
undergoing various excitations, the presented &&numerical'' (or vector) mode approach
incorporated with the transfer matrix method provides one of the most simple,
straightforward and practical techniques in addition to the conventional "nite element
method.

2. By neglecting the damping e!ects due to inner damping (of material), outer damping
and Coriolis force, the natural frequencies of the piping system decrease with
increasing (average) #uid velocity ;

0
, and buckling instability of the "rst mode may

occur if ;
0

exceeds a certain value.
3. If the e!ect of the Coriolis force is neglected, then the maximum dynamic responses of

a piping system due to an excitation with exciting frequency u
e
near the "rst natural

frequency of the system (uN
1
) will signi"cantly increase with increasing the #uid

velocity ;
0
.

4. The Coriolis force has a negligible e!ect on the dynamic response of a piping system
with lower #uid velocities, but it has a &&negative'' damping e!ect to raise the dynamic
response of the piping system with higher #uid velocities. In general, this &&negative''
e!ect signi"cantly increases with increasing #uid velocities (;

0
) only if the exciting

frequency (u
e
) approaches the "rst natural frequency of the piping system (uN

1
).

REFERENCES

1. S. S. CHEN 1971 Journal of the Engineering Mechanics Division, Proceedings of the American
Society of Civil Engineers 97, 1469}1485. Dynamic stability of a tube conveying #uid.

2. M. P. PAIDOUSSIS and N. T. ISSID 1974 Journal of Sound and <ibration 33, 267}294. Dynamic
stability of pipes conveying #uid.

3. E. C. TING and A. HOSSEINIPOUR 1986 Journal of Sound and <ibration 88, 289}298. A numerical
approach for #ow-induced vibration of pipe structures.

4. M. P. PAIDOUSSIS, T. P. LUU and B. E. LAITHIER 1986 Journal of Sound and <ibration 106,
311}331. Dynamics of "nite-length tubular beams conveying #uid.

5. W. H. CHEN and C. N. FAN 1987 Journal of Sound and <ibration 119, 429}442. Stability analysis
with lumped mass and friction e!ects in elastically supported pipes conveying #uid.



214 J.-S. WU AND P.-Y. SHIH
6. A. PRAMILA, J. LAUKKANEN and S. LIUKKONEN 1991 Journal of Sound and <ibration 144,
421}425. Dynamics and stability of short #uid-conveying Timoshenko element pipes.

7. C. O. CHANG and K. C. CHENG 1994 Journal of Pressure<essel ¹echnology 116, 57}66. Dynamics
and stability of pipes conveying #uid.

8. J. BRATT 1995 Structure Engineering Review 7, 15}21. Lateral vibration of #uid-conveying pipes.
9. R. A. STEIN and M. W. TOBRINER 1970 ¹ransactions of the ASME, Journal of Applied Mechanics

37, 906}916. Vibration of pipes containing #owing #uids.
10. K. SINGH and A. K. MALLIK 1977 Journal of Sound and <ibration 54, 55}66. Wave propagation

and vibration response of a periodically supported pipe conveying #uid.
11. K. SINGH and A. K. MALLIK 1979 Journal of Sound and <ibration 62, 379}397. Parametric

instabilities of a periodically supported pipe conveying #uid.
12. G. H. KOO and Y. S. PARK 1998 Journal of Sound and <ibration 210, 53}68, Vibration reduction

by using periodic supports in piping system.
13. D. J. MEAD and A. K. MALLIK 1976 Journal of Sound and <ibration 47, 457}471. An approximate

method of predicting the response of periodically supported beams subjected to random
convected loading.

14. U. N. RAO and A. K. MALLIK 1977 Journal of Sound and<ibration 55, 395}403. Response of "nite
periodic beams to convected loading*an approximate method.

15. A. S. DMITRIEV 1982 Soviet Applied Mechanics 18, 179}186. Dynamics of continuous multispan
beams under a moving force.

16. J. S. WU and C. W. DAI 1987 Journal of Structural Engineering, ASCE 113, 458}474, Dynamic
response of multispan nonuniform beam due to moving loads.

17. C. W. CAI, Y. K. CHEUNG and H. C. CHAN 1988 Journal of Sound and <ibration 123, 461}472.
Dynamic response of in"nite continuous beams subjected to moving force*an exact method.

18. K. HENCHI, M. FAFARD, G. DHATT and M. TALBOT 1997 Journal of Sound and <ibration 199,
33}50. Dynamic behavior of multispan beams under moving loads.

19. R. W. CLOUGH and J. PENZIEN 1976 Dynamics of Structures, New York: McGraw-Hill.
20. W. D. PILKEY and P. Y. CHANG 1978 Modern Formulas for Statics and Dynamics. New York:

McGraw-Hill.
21. L. MEIROVITCH 1967 Analytical Methods in <ibrations. London: Macmillan.
22. K. J. BATHE 1982 Finite Element Procedures in Engineering Analysis. Englewood Cli!s, NJ:

Prentice-Hall, Inc.

APPENDIX A: TRANSFER MATRICES FOR THE BERNOULLI}EULER BEAM

For a Bernoulli}Euler beam, the transfer matrix for the rth "eld, [¹
F
]
r
, that for the rth

station, [¹
s
]
r
, and that for the kth intermediate rigid (pin) support as shown in Figure 1,
Figure A.1. Diagram for determination of transfer matrix of rigid-supported stations: (a) discrete system for
beam segment between any two adjacent supports S

k
and S

l
; (b) state variables at the right side of support S

k
and

the left side of support S
l
.
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[¹
S
]S

k
, are given by [16, 20]

[¹
F
]
r
"

1 !Dx
r

!

Dx2
r

2EI
r

!

Dx3
r

6EI
r

0 1
Dx2

r
EI

r

Dx2
r

2EI
r

0 0 1 Dx
r

0 0 0 1

, [¹
S
]
r
"

1 0 0 0

0 1 0 0

0 0 1 0

!u2m
r

0 0 1

, (A.1, 1.2)

[¹
S
]s

k
"

1 0 0 0

0 1 0 0

0 0 1 0

!

¹kl
11

¹kl
14

!

¹kl
12

¹kl
14

!

¹kl
13

¹kl
14

0

, (A.3)

where Dx
r
and I

r
, respectively, denote the length and moment of inertia for the rth "eld

(beam segment), m
r
denotes the lumped mass for the rth station, and ¹kl

1j
( j"1}4) denote

the coe$cients of the "rst row of the cumulative transfer matrix for the stations and "elds
located at the space between the two adjacent intermediate rigid supports S

k
and S

l
(see

Figure A1).
The corresponding state vector for equations (A.1)}(A.3) is

MQN"M> >@ M <N, (A.4)

where >, >@, M, < denote the vertical (transverse) displacement, slope, shear force and
bending moment at any section of the beam (see Figure A1) respectively.
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